Приставка для проверки транзисторов. Схемы испытателей биполярных транзисторов

Для транзисторов структуры п-р-п полярность включения питающей батареи GB и измерительного прибора РА должна быть обратной.

Обратный ток коллектора Iкбо измеряют при заданном обратном напряжении на коллекторном р-п переходе и отключенном эмиттере (рис. 57, а). Чем он меньше, тем выше качество коллекторного перехода и стабильность работы транзистора.

Параметр h21э, характеризующий усилительные свойства транзистора, определяют как отношение тока коллектора Iк к вызвавшему его току базы IБ, (рис. 57, б), т. е. h2lэ ~ Iк/Iв. Чем больше численное значение этого параметра, тем больше усиление сигнала, которое может обеспечить транзистор.

Для измерения этих двух основных параметров маломощных биполярных транзисторов можно рекомендовать сделать в кружке приставку к самодельному авометру, описанному выше. Схема такой приставки показана на рис. 58, а. Проверяемый транзистор V подключают выводами электродов к соответствующим зажимам «Э», «Б» и «К» приставки, соединенной (через зажимы XI, Х2 и проводники с однополюсными штепселями на концах) с миллиамперметром авометра, включенного на предел измерения «1 мА». Переключатель S2 предварительно устанавливают в положение, соответствующее структуре проверяемого транзистора. При проверке транзистора структуры п-р-п с гнездом «Общ.» авометра соединяют зажим XI приставки (как на рис. 58, а), а при проверке транзистора структуры р-п-р — зажим Х2.

Установив переключатель S1 в положение «I КБО», измеряют сначала обратный ток коллекторного перехода, а затем, переведя переключатель S1 в положение «h21э», — статический коэффициент передачи тока. Отклонение стрелки прибора на всю шкалу при измерении параметра I КБ0 укажет на пробой коллекторного перехода проверяемого транзистора.

Измерение параметра h21э происходит при фиксированном токе базы, ограничиваемым резистором R1 до 10 мкА. При этом транзистор открывается и в его коллекторной цепи (в том числе через миллиамперметр) течет ток, пропорциональный коэффициенту h21э. Если, например, прибор фиксирует ток 0,5 мА (500 мкА), то коэффициент h21э проверяемого транзистора будет 50 (500: 10 = 50). Ток 1 мА (отклонение стрелки прибора до конечной отметки шкалы), следовательно, соответствует коэффициенту h21э равному 100. Если стрелка прибора зашкаливает, миллиамперметр авометра надо переключить на следующий предел измерения тока — «10 мА». В этом случае вся шкала прибора будет соответствовать коэффициенту h21э, равному 1000, а каждая десятая часть ее — 100.

Резистор R2, ограничивающий ток в измерительной цепи до 3 мА, нужен для предупреждения порчи измерительного прибора из-за пробоя проверяемого транзистора.
Возможная конструкция приставки показана на рис. 58, б. Для лицевой панели, размерами примерно 130X75 мм, желательно использовать листовой гетинакс или текстолит толщиной 1,5—2 мм.

Зажимы «Э», «Б» и «К> для подключения выводов транзистора типа «крокодил». Переключатель вида измерений S1 — тумблер ТП2-1, структуры транзистора S2 — ТП1-2. Батарею питания GB1 — 3336Л или составленную из трех элементов 332, крепят на панели снизу, там же монтируют и ограничительные резисторы R1 и R2. Зажимы (или гнезда) для соединения приставки с авометром размещают в любом удобном месте, например на задней боковой стенке ящика. Сверху на панель наклеивают краткую инструкцию по работе с приставкой-измерителем. Проверить работоспособность и оценить усилительные свойства транзисторов средней и большой мощности можно с помощью простого прибора, схема которого приведена на рис. 59. Проверяемый транзистор V подключают к зажимам, соответствующим его электродам. При этом в коллекторную цепь транзистора оказывается включенным амперметр РА1 на ток полного отклонения стрелки 1A, а в базовую — один из резисторов R1—R4. Сопротивления резисторов подбирают с таким расчетом, чтобы ток базовой цепи транзистора можно было устанавливать равным 3, 10, 30 и 50 мА. Таким образом, проверка транзистора осуществляется при фиксированных токах в базовой цепи, устанавливаемых переключателем S1. Источником питания служат три элемента 373, соединенные последовательно, или низковольтный выпрямитель, обеспечивающий напряжение 4,5 В при токе нагрузки до 2А.

Численное значение статического коэффициента передачи тока проверяемого транзистора определяют как отношение тока коллектора к вызвавшему его току базы. Например, если переключатель S1 установлен на ток базы, равный 10 мА, а амперметр PA 1 фиксирует ток 500 мА, значит, коэффициент h21э данного транзистора равен 50 (500: 10 = 50).

Конструкция такого прибора — испытателя транзисторов произвольная. Ее можно сделать как приставку к авометру, амперметр которого рассчитан на измерение постоянных токов до нескольких ампер.

Производить проверку транзистора надо возможно быстрее, потому что уже при токе коллектора 250...300 мА он начинает нагреваться и тем самым вносить погрешности в результаты измерений.

Прибор для проверки параметров биполярных транзисторов может быть и самодельным.

Прежде чем вмонтировать транзистор в то или иное радиотехническое устройство, желательно, а если транзистор уже где-то использовался ранее, то совершенно обязательно, проверить его обратный ток коллектора Iкбо статический коэффициент передачи тока h21Э и постоянство коллекторного тока. Эти важнейшие параметры маломощных биполярных транзисторов структур р-n-р и n-р-n ты можешь проверять с помощью прибора, схема и устройство которого изображены на рис. 121. Для него потребуются: миллиамперметр РА1 на ток 1 мА, батарея GB напряжением 4,5 В, переключатель S1 вида измерений, переключатель S2 изменения полярности включения миллиамперметра и батареи, кнопочный выключатель S3 для включения источника питания, два резистора и три зажима типа «крокодил» для подключения транзисторов к прибору. Для переключателя вида измерений используй двухпозиционный тумблер ТВ2-1, для изменения полярности включения миллиамперметра и батареи питания - движковый переключатель транзисторного приемника «Сокол» (о конструкции и креплении переключателя этого типа я расскажу в следующей беседе).

Рис. 121. Схема и конструкция прибора для проверки маломощных биполярных транзисторов

Кнопочный выключатель может быть любым, например подобным звонковому или в виде замыкающихся пластинок, Батарея питания - 3336Л или составления из трех элементов 332 или 316.

Шкала миллиамперметра должна иметь десять основных делений, соответствующих десятым долям миллиамперметра. При проверке статического коэффициента передачи тока каждое деление шкалы будет оцениваться десятью единицами значения .

Детали прибора смонтируй на панели из изоляционного материала, например гетинакса. Размеры панели зависят от габаритов деталей.

Прибор действует так. Когда переключатель S1 вида измерений установлен в положение , база проверяемого транзистора V оказывается замкнутой на эмиттер. При включении питания нажатием кнопочного выключателя S3 стрелка миллиамперметра покажет значение обратного тока коллектора . Когда же переключатель находится в положении , на базу транзистора через резистор R1 подается напряжение смещения, создающее в цепи базы ток, усиливаемый транзистором. При этом показание миллиамперметра, включенного в коллекторную цепь, умноженное на 100, соответствует примерному значению статического коэффициента передачи тока h21Э данного транзистора. Так, например, если миллиамперметр покажет ток 0,6 мА, коэффициент h21Э данного транзистора будет 60.

Положение контактов переключателя, показанное на рис. 121, а, соответствует включению прибора для проверки транзисторов структуры р-n-р. В этом случае на коллектор и базу транзистора относительно эмиттера подается отрицательное напряжение, миллиамперметр подключен к батарее отрицательным зажимом. Для проверки транзисторов структуру n-р-n подвижные контакты переключателя S2 надо перевести в другое нижнее (по схеме) положение. При этом на коллектор и базу транзистора относительно эмиттера будет подаваться положительное напряжение, изменится и полярность включения миллиамперметра в коллекторную цепь транзистора.

Проверяя коэффициент транзистора, следи внимательно за стрелкой миллиамперметра. Коллекторный ток с течением времени не должен изменяться - «плыть». Транзистор с плавающим током коллектора не годен для работы.

Учти: во время проверки транзистора его нельзя держать рукой, так как от тепла руки ток коллектора может измениться.

Какова роль резистора R2, включенного последовательно в коллекторную цепь проверяемого транзистора? Он ограничивает ток в этой цепи на случай, если коллекторный переход транзистора окажется пробитым и через него пойдет недопустимый для миллиамперметра ток.

Максимальный обратный ток коллектора Iкбо для маломощных низкочастотных транзисторов может достигать 20-25, но не больше 30 мкА. В нашем приборе это будет соответствовать очень малому отклонению стрелки миллиамперметра - примерно третьей части первого деления шкалы. У хороших маломощных высокочастотных транзисторов ток Iкбо значительно меньше - не более нескольких микроампер, прибор на него почти не реагирует. Транзисторы, у которых Iкбо превышает в несколько раз допустимый, считай непригодными для работы - они могут подвести.

Прибор с миллиамперметром на 1 мА позволяет измерять статический коэффициент передачи тока h21Э до 100, т.е. наиболее распространенных транзисторов. Прибор с миллиамперметром на ток 5-10 мА расширит соответственно в 5 или 10 раз пределы измерений коэффициента h21Э. Но прибор станет почти нечувствительным к малым значениям обратного тока коллектора.

У тебя, вероятно, возник вопрос: нельзя ли в качестве миллиамперметра - прибора для проверки параметров транзисторов - использовать микроамперметр описанного ранее комбинированного измерительного прибора?

Рис. 122. Схема измерения параметров и S полевого транзистора

Ответ однозначный: можно. Для этого миллиамперметр комбинированного прибора надо установить на предел измерения до 1 мА и подключать его к приставке для проверки транзисторов вместо миллиамперметра РА1.

А как измерить основные параметры полевого транзистора? Для этого нет надобности конструировать специальный прибор, тем более, что в твоей практике полевые транзисторы будут использоваться не так часто, как маломощные биполярные.

Для тебя наибольшее практическое значение имеют два параметра полевого транзистора: - ток стока при нулевом напряжении на затворе и S - крутизна характеристики. Измерить эти параметры можно по схеме, приведенной на рис. 122. Для этого потребуются: миллиамперметр РА1 (используй комбинированный прибор, включенный на измерение постоянного тока), батарея GB1 напряжением 9 В («Крона» или составленная из двух батарей 3336Л) и элемент G2 (332 или 316).

Делай это так. Сначала вывод затвора проверяемого транзистора соедини с выводом истока. При этом миллиамперметр покажет значение первого параметра транзистора - начальный ток стока . Запиши его значение. Затем разъедини выводы затвора и истока (на рис. 122 показано крестом) и подключи к ним элемент G2 плюсовым полюсом к затвору (на схеме показано штриховыми линиями). Миллиамперметр зафиксирует меньший ток, чем Iс нач. Если теперь разность двух показаний миллиамперметра разделить на напряжение элемента G2, получившийся результат будет соответствовать численному значению параметра S проверяемого транзистора.

Для измерения таких же параметров полевых транзисторов с р-n переходом и каналом типа полярность включения миллиамперметра, батареи и элемента надо поменять на обратную.

Измерительные пробники и приборы, о которых я рассказал в этой беседе, поначалу тебя вполне устроят. Но позже, когда настанет время конструирования и налаживания радиоаппаратуры повышенной сложности, например супергетеродинных приемников, аппаратуры телеуправления моделями, потребуются еще измерители емкости конденсаторов, индуктивности катушек, вольтметр с повышенным относительным входным сопротивлением, генератор колебаний звуковой частоты. Об этих приборах, которые пополнят твою измерительную лабораторию, я расскажу позже.

Но, разумеется, самодельные приборы не исключают приобретение промышленных. И если такая возможность у тебя появится, то в первую очередь купи авометр - комбинированный прибор, позволяющий измерять постоянные и переменные напряжения и токи, сопротивления резисторов, обмоток катушек и трансформаторов и даже проверять основные параметры транзисторов. Такой прибор при бережном обращении с ним многие годы будет тебе верным помощником в радиотехническом конструировании.

Несмотря на то, что народ массово кинулся в ламповое и микросхемное усилителе-строение, а на "рассыпухе" - на полевые транзисторы, все еще значительную долю занимают "рассыпные" УМЗЧ на биполярных "выхлопниках". Тем более, подобные аппараты постоянно попадаются для ремонта.

Не вызывает сомнений постулат, что для минимизации нелинейных искажений требуется попарный подбор комплементарных транзисторов по крайней мере по коэффициенту их усиления. Особую важность это приобретает для мощных (сценических) УМЗЧ, в которых используется по несколько запараллеленных "выхлопников".

Если для подбора маломощных транзисторов достаточно "китайских" мультиметров с режимом "бетирования", то для мощных транзисторов (по крайней мере отечественных транзисторов старых разработок), проблема измерения коэффициента их усиления (h 21e) осложняется еще и тем, что он существенно зависит от тока коллектора. Следовательно, измерять h 21e приходится при по крайней мере двух значениях коллекторного тока.

Как-то попались мне для ремонта несколько мощных УМЗЧ, на выходе которых в каждом плече стояло по 4...8 транзисторов КТ864/865. Покупать по несколько коробок с последующим отбором дома - выходило крайне накладно. Поэтому за день по-быстрому собрал "бетник", конструкция которого и приводится, с помощью которого отобрал нужное количество согласованных транзисторов прямо на рынке. Пользуюсь этим прибором уже более 4-х лет. "Полет - нормальный".

Схемотехника "бетника", в принципе, известная. Он представляет собой микросхемный стабилизатор тока с выходным регулирующим транзистором, коллекторный ток которого и стабилизируется. Его h 21e измеряется по току, поступающему в базу транзистора стрелочным измерительным прибором PA1, включенным в диагональ диодного моста, что исключает необходимость коммутации при испытании транзисторов разной структуры. Дополнительный умощняющий каскад на транзисторах VT1-VT2 нужен чтобы не перегружать выход ОУ при тестировании транзисторов с малыми значениями h 21e при большом коллекторном токе. На схеме не показана кнопка, кратковременно подающая питание на всю схему, что позволяет экономить автономные источники питания и защищает измерительный прибор при проверке пробитых транзисторов, при неправильном их подключении или при неправильном выборе проводимости. Двухцветный светодиод VD1 индицирует, кроме наличия питания, и полярность тестируемого транзистора (красный - n-p-n, зеленый - p-n-p).

Измерения проводятся при коллекторном токе 50 и 500 мА, выбираемых переключателем SA3. Измерения h 21e проводятся в трех диапазонах, выбираемых переключателем SA2 с минимальными значениями 10, 30 и 100. Относительным недостатком является обратная и существенно неравномерная шкала измерительного прибора:

Опорное напряжение для стабилизатора тока задается стабилитронами VD2-VD3, включенными встречно-последовательно. Их следует подобрать по одинаковому напряжению стабилизации. В принципе, оптимальным вариантом было бы использование двуханодного термокомпенсированного стабилитрона, но мне они на напряжение стабилизации менее 6,2 В как-то не попадались, а опорное напряжение желательно бы делать поменьше - тогда на испытуемом транзисторе падает большая часть напряжения питания, что тоже важно для правильного измерения (например, h 21e у КТ8101/8102 существенно падает при коллекторном напряжении мене 5 В). Переключение полярности напряжения, поступающего на формирователь опорного напряжения и испытуемый транзистор разных типов производится переключателем SA1.

Номинал эмиттерного резистора R11, задающего коллекторный ток 50 мА, приходится подбирать в зависимости от полученного опорного напряжения:

При этом измерительный мост просто перемыкается накоротко. Номинал эмиттерного резистора R10, подключаемого параллельно R11 для задания тока 500 мА должен быть в 9 раз меньше, чем у R11.

Номиналы резисторов измерительной части рассчитаны для головки на ток 100 мкА сопротивлением 550 Ом. Для других головок их придется пересчитать.

Настройка производится при отключенном от генератора тока диодном мосте. При невозможности точного подбора номиналов низкоомных резисторов ставится ближайшего большего номинала, параллельно которому - более высокоомный, чтобы получить нужное сопротивление.

Питается он от любого сетевого адаптера на напряжение 12…15 В и ток до 500 мА, либо от комплекта батарей на то же напряжение. В оригинальном варианте сетевой трансформатор с выпрямителем и фильтрующим конденсатором встроен прямо в корпус прибора.

Алексей (Киев, Украина) ( )

Прежде чем рассмотреть способы как проверить исправность транзисторов необходимо знать, как проверять исправность p-n перехода или как правильно тестировать диоды. Именно с этого мы и начнем...

Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении - бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5...0,8 В, для германиевых - 0,2...0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов , так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45...0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев. Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления - более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2...1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора ;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В - прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. "программировать" его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже - для ОПТ - рис. слева, для программируемого ОПТ - рис. справа).

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа - схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение - "тестирование цифровых транзисторов затруднено... Лучший вариант - замена на заведомо исправный транзистор". Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис.4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 - 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор , с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить полевой МОП-транзистор

Существует несколько разных способов проверки полевых МОП-транзисторов. Например такой:

  • Проверить сопротивление между затвором - истоком (3-И) и затвором - стоком (3-С). Оно должно быть бесконечно большим.
  • Соединить затвор с истоком. В этом, случае переход исток - сток (И-С) должен прозваниваться как диод (исключение для МОП-транзисторов, имеющих встроенную защиту от пробоя - стабилитрон с определенным напряжением открывания).

Самой распространенной и характерной неисправностью полевых МОП-транзисторов является короткое замыкание между затвором - истоком и затвором - стоком.

Другим способом является использование двух омметров. Первый включается для измерения между истоком и стоком, второй - между истоком и затвором. Второй омметр должен иметь высокое входное сопротивление - около 20 МОм и напряжение на выводах не менее 5 В. При подключении второго омметра в прямой полярности транзистор откроется (первый омметр покажет сопротивление близкое к нулю), при изменении полярности на противоположную транзистор закроется. Недостаток этого способа - требования к напряжению на выводах - второго омметра. Естественно, цифровые мультиметры для этих целей не подходит. Это ограничивает применение такого способа проверки.

Еще один способ похож на второй. Сначала кратковременно соединяют между собой выводы затвора и истока для того, чтобы снять имеющийся на затворе заряд. Далее к выводам истока-стока подключают омметр. Берут батарейку напряжением 9 В и кратковременно подключают ее плюсом к затвору, а минусом - к истоку. Транзистор откроется и будет открыт некоторое время после отключения батарейки за счет сохранения заряда. Большинство полевых МОП-транзисторов открывается при напряжении затвор-исток около 2 В.

При тестировании полевых МОП-транзисторов следует соблюдать особую осторожность, чтобы не вывести его из строя транзистор статическим электричеством.

Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

При определении структуры транзистора, тип которого неизвестен, следует путем перебора шести вариантов - определить вывод базы, а затем измерить прямое напряжение на переходах. Прямое напряжение на переходе база-эмиттер всегда на несколько милливольт выше прямого напряжения на переходе база-коллектор (при пользовании стрелочного мультиметра сопротивление перехода база-эмиттер в прямом направлении несколько выше сопротивления перехода база-коллектор). Это связано с технологией производства транзисторов, и правило применимо к обыкновенным биполярным транзисторам, за исключением некоторых типов мощных транзисторов, имеющих встроенный демпферный диод. Полярность щупа мультиметра, подключенного при измерениях на переходах в прямом направлении к базе транзистора укажет на тип транзистора: если это «+» - транзистор структуры n-p-n, если «-» - структуры р-n-р.

При сборке или ремонте усилителей звука довольно часто требуется подобрать идентичные по параметрам пары биполярных транзисторов . Китайские цифровые тестеры могут измерить коэффициент передачи тока базы (в народе — коэффициент усиления) биполярного транзистора, но маломощного. Для входных дифференциальных или двухтактных каскадов подойдёт. А как быть с мощными выходными?

Для этих целей в измерительной лаборатории радиолюбителя, занимающегося конструированием или ремонтом усилителей, должен быть . Он должен измерять коэффициент усиления на больших токах, близких к рабочим.

Для справки: коэффициент усиления транзистора «по научному» называется коэффициентом передачи тока базы в цепь эмиттера, обозначается h21э . Раньше назывался «бэта» и обозначался как β, поэтому иногда радиолюбители старой школы прибор для проверки транзисторов называют «бетник».

В Интернете и радиолюбительской литературе можно найти огромное количество вариантов схем прибора для проверки транзисторов . Как довольно простых, так и сложных, рассчитанных на разные режимы или автоматизацию процесса измерений.

Для самостоятельной сборки решено было выбрать схему попроще, чтобы наши читатели без труда могли сделать прибор для проверки транзисторов своими руками . Заметим сразу, что нам как-то чаще приходится иметь дело с усилителями на биполярных транзисторах , поэтому и получившийся в конце концов прибор предназначен для измерения параметров только биполярных транзисторов .

Для справки: раньше главный редактор РадиоГазеты измерения проводил старым дедовским способом: два мультиметра (в цепь базы и цепь эмиттера) и «многооборотник» для задания тока. Долго, но информативно – можно не просто подобрать транзисторы, но и снять зависимость h21э от тока коллектора. Довольно быстро пришло осознание бесполезности данного занятия: для наших транзисторов снимать такую зависимость – одно расстройство (настолько они кривые), для импортных – пустая трата времени (все графики есть в даташитах).

Включив паяльник, главный редактор принялся собирать прибор для проверки транзисторов своими руками.

Если ноги плохо пахнут, вспомните, откуда они растут.

Немного погуглив, я нашёл схему прибора для проверки транзисторов , которая растиражирована на довольно приличном количестве сайтов. Простая, портативная... но кроме самого автора её никто не хвалит. Это должно было смутить сразу, но увы.

Итак, исходная схема (с немного упрощенной индикацией и коммутацией):

Увеличение по клику

По замыслу автора здесь операционный усилитель совместно с испытуемым транзистором образуют источник стабильного тока. Ток эмиттера в этой схеме постоянный и определяется величиной эмиттерного резистора. Зная этот ток, нам остаётся только измерить ток базы, а затем путём деления одного на другое получить значение h21э. (в авторском варианте шкала измерительной головки сразу градуировалась в значениях h21э).

Два биполярных транзистора на выходе ОУ служат для увеличения нагрузочной способности микросхемы при измерении на больших токах. Диодный мост включён для того, чтобы исключить необходимость перекоммутации амперметра при переключении с «p-n-p» на «n-p-n» транзисторы. Для повышения точности подбора комплементарных пар биполярных транзисторов требуется отобрать стабилитроны (задающие опорное напряжение) с максимально близкими напряжениями стабилизации.

Меня как-то сразу смутило «не совсем корректное» включение операционного усилителя при однополярном питании. Но макетная плата всё стерпит, поэтому схема была собрана и опробована.

Сразу выявились недостатки. Ток через транзистор сильно зависел от напряжения питания, что ни разу не напоминает генератор стабильного тока . Что там умудрился подбирать автор схемы, питая при этом прибор от аккумулятора, остаётся большой загадкой. По мере разряда аккумулятора «образцовый» ток будет уплывать и довольно заметно. Потом пришлось повозиться в «умощнителем» на выходе ОУ иначе схема неустойчиво работала при измерении транзисторов разной мощности. Потребовалось подобрать значение резистора, а потом я перешёл на более «классический» вариант умощнителя. А двухполярное (правильное) питание ОУ решило проблему с плавающим током.

В итоге схема приобрела вид:

Увеличение по клику

Но тут выявился ещё один недостаток – если вы перепутаете проводимость биполярного транзистора (включите на приборе «p-n-p», а подключите транзистор «n-p-n»), а при подборе из большого количества транзисторов вы точно рано или поздно забудете переключить прибор, то выходит из строя один из транзисторов «умощнителя» и придётся заниматься ремонтом прибора. Да и к чему нам сложности с двухполярным питанием, операционник, умощнитель и прочее?

Всё гениальное просто!

Я задался целью сделать что-то попроще и понадёжнее. Идея с источником тока мне понравилась, проводя измерения на фиксированном (заранее известном) токе эмиттера, мы можем сократить необходимое количество измерительных приборов (амперметров).
Тут я вспомнил про свою любимую микросхему TL431 . Генератор тока на ней строится всего из 4-х деталей: Учитывая не очень большую нагрузочную способность этой микросхемы (а на радиатор её крепить крайне неудобно), для испытания мощных транзисторов при больших токах воспользуемся идеей господина Дарлингтона :

Теперь загвоздка – ни в одном справочнике нет схемы источника тока на TL431 и транзисторе «p-n-p» структуры. Решить эту проблему помогла идея не менее уважаемого мною господина Шиклаи :

Да, пытливый глаз заметит, что через токозадающий резистор здесь протекают токи обоих транзисторов, что вносит некоторую погрешность в измерения. Но, во-первых, при значениях коэффициента передачи тока базы транзистора Т2 выше 20, погрешность составит менее 5% , что для радиолюбительских целей вполне допустимо (мы не Шаттл к Венере запускаем).

Во-вторых, если мы всё же запускаем Шаттл, и нам требуется высокая точность, эту погрешность легко учесть в расчётах. Ток эмиттера транзистора Т1 практически равен току базы транзистора Т2, а его-то мы и будем измерять. В результате, при расчёте h21э (а это очень удобно выполнять в программе Excel) вместо формулы: h21э=Iэ/Iб нужно использовать формулу: h21э=Iэ/Iб-1

Для минимизации данной погрешности, а так же для обеспечения нормальной работы микросхемы TL431 в широком диапазоне токов в качестве транзистора Т1 следует отобрать транзистор с максимальным h21э. Так как это маломощный биполярный транзистор, пока не готов наш прибор, можно воспользоваться китайским мультиметром. Мне удалось всего из 5 штук транзисторов КТ3102 найти экземпляр со значением 250.

Так как сегодня в хозяйстве любого радиолюбителя найдётся китайский мультиметр (а то и не один), его-то мы и будем использовать в качестве измерителя базового тока, что позволит нам не городить коммутацию для разных диапазонов базовых токов (у меня мультиметр с автоматическим выбором предела измерений), а заодно исключить из схемы выпрямительный мост – цифровому мультиметру без разницы направление протекающего тока.

Схема имени меня, Шиклаи и Дарлингтона.

Для объединения вышеприведённых схем в одну добавим немного коммутирующих элементов, источник питания и для большей универсальности расширим диапазон эмиттерных токов. В результате получилась вот такая :

Увеличение по клику

При указанных на схеме номиналах расчетный ток эмиттера обеспечивается уже при +4В питающего напряжения, так что это действительно генератор стабильного тока . Ради эксперимента я пару раз подключал транзисторы не той структуры. Ничего не сгорело! Хотя может быть стоило ток побольше задать? Скажу честно, испытаний на выносливость этого прибора проведено мало, время покажет, но начало мне нравится.

В принципе, питать прибор можно даже от нестабилизированного источника, так как стабилизация тока в схеме осуществляется в очень широком диапазоне питающих напряжений. Но! Бывают транзисторы (особенно отечественные), у которых коэффициент передачи тока базы сильно зависит от напряжения коллектор-эмиттер . Чтобы устранить погрешности измерений из-за нестабильной сети, в схеме предусмотрен стабилизированный источник питания. Кстати, именно из-за таких «кривых» транзисторов следует проводить измерения минимум при трёх разных значения тока.

Итак, схема прибора для проверки транзисторов получилась очень простой, что позволяет без проблем собрать этот прибор самостоятельно, своими руками. Прибор позволяет измерять коэффициент передачи тока базы маломощных и мощных биполярных транзисторов «p-n-p» и «n-p-n» структуры путём измерения тока базы при фиксированном токе эмиттера.

Для маломощных биполярных транзисторов выбраны значения тока эмиттера: 2мА, 5мА, 10мА.
Для мощных биполярных транзисторов измерения проводятся при токах эмиттера: 50мА, 100мА, 500мА.
Ни кто не запрещает проверять транзисторы средней мощности при токах 10мА, 50мА, 100мА. В общем, вариантов масса.
Значения эмиттерных токов можно изменить на своё усмотрение путём пересчёта соответствующего токозадающего резистора по формуле:

R= Uо/Iэ ,

где Uо — опорное напряжение TL431 (2,5В), Iэ — требуемый ток эмиттера испытуемого транзистора.

ВНИМАНИЕ: В природе встречаются микросхемы TL431 с опорным напряжением 1,2В (не помню как отличается маркировка). В этом случае значения всех токозадающих резисторов, указанных на схеме, необходимо пересчитать!

Конструкция и детали.

Из-за простоты устройства печатная плата не разрабатывалась, все элементы распаиваются на выводах переключателей и разъёмов. Всю конструкцию можно собрать в корпусе небольшого размера, всё будет зависеть от габаритов применённого трансформатора и переключателей.

При испытании мощных биполярных транзисторов на больших токах (100мА и 500мА) их необходимо закрепить на радиаторе ! Если пластинчатый радиатор смонтировать на одной из стенок прибора или сам радиатор использовать в качестве стенки прибора, то это сделает пользование устройством более удобным. Радиатор, который всегда с собой! Это существенно ускорит процесс испытания мощных транзисторов в корпусах ТО220, ТО126, ТОР3, ТО247 и аналогичных.

Микросхему стабилизатора блока питания также необходимо установить на небольшой радиатор. Диодный мост подойдёт любой на ток 1А и выше. В качестве трансформатора можно использовать подходящий малогабаритный, мощностью от 10Вт с напряжением вторичной обмотки 10-14В.

Опционально: в приборе для проверки транзисторов предусмотрены гнёзда для подключения второго мультиметра (включенного в режим измерения постоянного напряжения на предел 2-3В). Подсмотрел эту идею на одном из форумов. Это позволяет измерить Uбэ транзистора (при необходимости вычислить крутизну). Данная функция очень удобна при подборе биполярных транзисторов одной структуры для ПАРАЛЛЕЛЬНОГО включения в одном плече выходного каскада усилителя. Если при одном и том же токе напряжения Uэб отличаются не более чем на 60мВ, то такие транзисторы можно включать параллельно БЕЗ эмиттерных токовыравнивающих резисторов. Теперь вы понимаете, почему усилители фирмы Accuphase, где в выходном каскаде в каждом плече включено параллельно до 16 транзисторов, стоят таких денег?

Перечень используемых элементов:

Резисторы:
R3 — 820 Ом, 0,25Вт,
R4 — 1к2, 0,25Вт,
R5 — 510 Ом, 0,25 Вт,
R6 — 260 Ом, 0,25Вт
R7 — 5,1 Ом, 5Вт (лучше больше),
R8 — 26 Ом, 1 Вт,
R9 — 51 Ом, 0,5Вт,
R10 — 1к8, 0,25 Вт.

Конденсаторы:

С1 — 100nF, 63V,
C2 — 1000uF, 35V,
C3 — 470uF, 25V

Коммутация:

S1 — переключатель типа П2К или галетный на три положения с двумя группами контактов на замыкание,
S2 — переключатель типа П2К, тумблер или галетный с одной группой контактов на переключение,
S3 - переключатель типа П2К или галетный на два положения с четырьмя группами контактов на переключение,
S4 — кнопка без фиксации,
S5 — сетевой выключатель

Активные элементы:

T3 — транзистор типа КТ3102 или любой маломощный n-p-n типа с высоким коэффициентом усиления,
D3 — TL431,
VR1 — интегральный стабилизатор 7812 (КР142ЕН8Б),
LED1 — светодиод зелёного цвета,
BR1 — диодный мост на ток 1А.

Tr1 — трансформатор мощностью от 10Вт, с напряжением вторичной обмотки 10-14В,
F1 — предохранитель на 100mA...250mA,
клеммы (подходящие доступные) для подключения измерительных приборов и испытуемого транзистора.

Работа с прибором для проверки транзисторов.

1. Подключаем к прибору мультиметр, включенный в режим измерения тока. Если нет режима «авто», то выбираем предел в соответствии с типом проверяемых транзисторов. Для маломощных - микроамперы, для мощных биполярных транзисторов — миллиамперы. Если вы не уверены в выборе режима, поставьте сначала миллиамперы, если показания будут низкие, переключите прибор на меньший предел.

2. Если есть необходимость подобрать транзисторы с одинаковым Uбэ, подключаем к соответствующим гнёздам прибора второй мультиметр в режиме измерения напряжения на предел 2-3В.

3. Подключаем прибор к сети и нажимаем кнопку «Вкл» (S5).

4. Переключателем S3 выбираем структуру испытуемого транзистора «p-n-p» или «n-p-n», а переключателем S2 его тип — маломощный или мощный. Переключателем S1 устанавливаем минимальное значение эмиттерного тока.

5. Подключаем к соответствующим гнездам выводы испытуемого транзистора. При этом, если транзистор мощный, его следует закрепить на радиаторе.

6. Нажимаем на 2-3 секунды кнопку S4 «Измерение». Считываем показания мультиметра, заносим их в таблицу.

7. Переключателем S1 устанавливаем следующее значение эмиттерного тока и повторяем пункт 6.

8. По окончании измерений отключаем транзистор от прибора, прибор — от сети. В принципе, парные транзисторы можно отобрать по близким значениям измеренного базового тока. Если требуется рассчитать коэффициент h21э или построить графики, то следует перенести данные в электронную таблицу Excel или аналогичную.

9. Сравниваем полученные данные в таблице и отбираем транзисторы с близкими значениями.

Вместо эпилога.

Немного замечаний по маломощным биполярным транзисторам (не зря же я для них режимы предусмотрел?).
Почему-то радиолюбители наибольшее внимание при построении усилителей на транзисторах уделяют (и то в лучшем случае) подбору идентичных экземпляров для оконечного каскада.

Между тем, на входе усилителя чаще всего используют дифференциальные каскады или реже двухтактные . При этом напрочь забывается, что для получения от диф. каскада как и от двухтактного по максимуму всех его замечательных свойств транзисторы в таком каскаде также должны быть подобраны !

Более того, для обеспечения максимально близкого температурного режима корпуса транзисторов дифкаскада лучше склеить между собой (или прижать друг к другу хомутиком), а не разносить по разным сторонам платы. Применение во входном каскаде интегральных транзисторных сборок устраняет эти проблемы, но такие сборки порой стоят дорого или просто не доступны радиолюбителям.

Поэтому подбор маломощных транзисторов входного каскада остаётся актуальной задачей, и предлагаемый прибор для проверки транзисторов может существенно облегчить этот процесс. Тем более, что один из выбранных для измерения режимов - ток 5мА, чаще всего и является током покоя первого каскада. А на каком токе проводит измерения китайский мультиметр???

Удачного творчества!

Главный редактор «РадиоГазеты».