Функциональные преобразователи: измерительные, параметрические, генераторные. Резистивные измерительные преобразователи е) тензорезисторных преобразователей

Тема 18

Измерительные преобразователи (датчики)

Ни одна система управления не может работать без информации о состоянии объекта управления и его реакции на управляющее воздействие. Элементом систем, обеспечивающим получение такой информации, является измерительный преобразователь-датчик .

Число типов датчиков значительно превосходит число измеряемых величин, так как одну и ту же физическую величину можно измерять различными методами и датчиками разных конструкций.

Для большинства датчиков характерно измерение электрическими методами не только электрических и магнитных, но и других физических величин. Такой подход обусловлен достоинствами электрических измерений, в виду того, что электрические сигналы можно просто и быстро передавать на большие расстояния, электрические величины легко, быстро и точно преобразуются в цифровой код, позволяют обеспечить высокую точность и чувствительность.

В качестве классификационных признаков датчиков можно принять многие характеристики: вид функции преобразования; род входной и выходной величины; принцип действия; конструктивное исполнение.

По виду используемой энергии датчики можно подразделить на электрические, механические, пневматические и гидравлические. В зависимости от вида выходного сигнала: аналоговые, дискретные, релейные, с естественным или унифицированным выходным сигналом.

По характеру преобразования входной величины в выходную: параметрические, генераторные, частотные, фазовые.

По виду измеряемой физической величины: линейных и угловых перемещениях, давления, температуры, концентрации веществ и т.д.

Принцип действия параметрических преобразователей заключается в преобразовании неэлектрических входных величин в параметры электрических цепей: сопротивление R , индуктивность L , емкость С , взаимоиндуктивность М . Для питания этих преобразователей требуются внешние источники. К таким датчикам относятся: резистивные, индуктивные, трансформаторные, емкостные преобразователи.

Генераторные преобразователи преобразуют входные величины в ЭДС. Они не требуют энергии дополнительных источников питания.

Это индукционные, термоэлектрические, пьезоэлектрические, фотоэлектрические преобразователи.

Фазовые и частотные преобразователи могут быть как параметрическими, так и генераторными.


Реостатные – выполнены в виде реостата, подвижной контакт которого перемещается под воздействием входной измеряемой величины. Чаще всего реостатный датчик включается в измерительную систему по схеме потенциометра, их иногда называют потенциометрическими датчиками.

Выходной величиной датчика является электрическое сопротивление функционально связанное с положением подвижного контакта. Такие датчики служат для преобразования угловых или нелинейных перемещений в соответствующее изменение сопротивления, тока, напряжения.



Они также могут быть использованы для измерения давления, расхода, уровня. Их часто используют также в качестве промежуточных преобразователей неэлектрических величин в электрические.

В устройствах автоматики широко применяются проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малый температурный коэффициент сопротивления (ТКС).

К недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.

Обмотку выполняют изолированным проводом виток к витку или с заданным шагом. В качестве провода применяют константан, манганин.

Датчик данного типа не реагируют на знак входного сигнала, работают как на постоянном, так и на переменном токе.

Тензорезисторы . В основе их работы лежит тензоэффект, заключающийся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации.

Характеристикой тензоэффекта материала служит коэффициент тензочувствительности К т, определяемый как отношение изменения сопротивления к изменению длины проводника

Константан – К т = 2

Нихром – К т = 2,2

Хром – К т = 2,5

Тензорезисторы используют для измерения давления жидкости и газов, при измерении упругих деформаций материалов: давлений изгибов, скручивания.

В качестве тензорезистивного материала можно использовать металлы с малым ТКС: манганин, константан, нихром, ртуть, высокотемпературные сплавы, полупроводниковые материалы: германий, кремний. Наибольшее распространение получили тензорезисторы из металла. Они разделяются на проволочные и фольговые, последние более совершенны.

Угольные преобразователи. Их принцип действия основан на изменении контактного сопротивления между частицами угля при изменении давления. Их применяют для измерения усилий, давлений, малых перемещений. Различают угольные столбики и тензолиты.

Первые представляют собой набор из 10-15 отшлифованных шайб, изготовленных из электродных углей.

Характеристика угольного преобразователя нелинейна, он имеет переменную чувствительность. Нестабильны в работе, характеристики зависят от температуры и влажности окружающей среды, качества подготовки поверхностей.

Вторые имеют малые размеры и массу. Их применяют для измерения быстроменяющихся и ударных напряжений в движущихся деталях небольшого размера, при этом они работают как на растяжение, так и на сжатие. Коэффициент чувствительности тензолитовых преобразователей больше, чем у тензорезисторов, и составляет К = 15 ¸ 20.

Она выполняется в виде полосок, состоящих из смеси графита, сажи, бакелитового лака и других компонентов. Эти полоски наклеиваются на испытуемую деталь.

Резистивные преобразователи несмотря на присущие им недостатки до настоящего времени находят широкое применение.

Емкостные преобразователи . Принцип действия основан на изменении емкости конденсатора под воздейтсивем входной преобразуемой величины

где e – относительная диэлектрическая проницаемость диэлектрика; e 0 – диэлектрическая проницаемость вакуума; S – площадь пластины; d – толщина диэлектрика или расстояния между пластинами.

Емкостные датчики используют для измерения угловых и линейных перемещений, линейных размеров, уровня, усилий, влажности концентрации и др.

В емкостных плоскопараллельных датчиках изменяется плоскость перекрытия S (перемененная площадь перекрытия) статическая характеристика линейна.

В емкостных преобразователях с переменным воздушным зазором характеристика нелинейна.

Преобразователи и изменением диэлектрической проводимости среды между электродами широко используются для измерения уровня жидких и сыпучих веществ, анализа состава и концентрации веществ в химической, нефтеперерабатывающей промышленности, для счета изделий, охранной сигнализации. Они имеют линейную статическую характеристику.

Емкость измерительных преобразователей в зависимости от конструктивных особенностей колеблется от десятых долей до нескольких тысяч пикофарад, что приводит к необходимости использовать для питания датчиков напряжения повышений частоты Гц.

Это существенный недостаток подобных преобразователей.

Диэлектрические свойства среды иногда изменяются под воздействием температуры или механических усилий. Эти эффекты также используются для создания соответствующих измерительных преобразователей.

Изменение проницаемости под действием температуры описывается выражением

,

где e т – диэлектрическая проницаемость материала при температуре Т ; e 0 – диэлектрическая проницаемость при температуре Т 0 ; a - температурный коэффициент; .

Аналогичный вид имеет и зависимость e от приложенного к нему усилия Р

,

где – чувствительность материала к относительному изменению диэлектрической проницаемости

.

Начальная емкость преобразователей тем больше, чем меньше зазор d между электродами. Однако уменьшение зазора ограничивается диэлектрической прочностью межэлектродной среды и наличием силы электростатического притяжения пластин.

Погрешности емкостных преобразователей в основном определяются влиянием температуры и влажности на геометрические размеры и диэлектрическую проницаемость среды. Они являются практически безинерционными элементами.

К достоинствам относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Реактивное сопротивление нагрузки выбирают равным по значению и обратным по знаку внутреннему сопротивлению датчика.

В параметрических преобразователях выходной величиной является параметр электрической цепи (R, L, М, С). При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи . Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы). В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Относительное изменение сопротивления проволоки, где S - коэффициент тензочувствительности;- относительная деформация проволоки.

Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент S у таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов.

Термочувствительные преобразователи (терморезисторы). Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или пoлупроводников от температуры.



Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки. Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до +1100°С, медные - в диапазоне от -200 до +200 "С.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС термисторов отрицательный и при 20 "С в 10-15 раз превышает ТКС меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где R T и Ro- сопротивления термистора при температурах Т и То, То- начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до +120°С.

Для измерения температуры от -80 до +150 °С применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р-n перехода и падение напряжения на этом переходе. Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования.

Электролитические преобразователи . Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

Индуктивные преобразователи . Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения, геометрических размеров и магнитного состояния элементов их магнитной цепи.

рис 11-12 Магнитопровод с зазорами и двумя обмотками

Индуктивность обмотки, расположенной на магнитопроводе, где Zm - магнитное сопротивление магнитопровода;- число витков обмотки.

Взаимная индуктивность двух обмоток, расположенных на том же магнитопроводе, , где и - число витков первой и второй обмоток. Магнитное сопротивление определяется выражением

где - активная составляющая магнитного сопротивления (рассеиванием магнитного потока пренебрегаем); - соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость i-го участка магнитопровода; mо - магнитная постоянная; d - длина воздушного зазора; s - площадь поперечного сечения воздушного участка магнитопровода,- реактивная составляющая магнитного сопротивления; Р - потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом;w- угловая частота; Ф - магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, воздействуя на длину d, сечение воздушного участка магнитопровода s, на потери мощности в магнитопроводе и другими путями.

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи . Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость , где - электрическая постоянная; - относительная диэлектрическая проницаемость среды между обкладками; s - активная площадь обкладок; d - расстояние между обкладками. Чувствительность преобразователя возрастает с уменьшением расстояния d. Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

Преобразователи применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков.

Рис. 11-16. Схема ионизационного преобразователя

Ионизационные преобразователи . Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, b-лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей.

В качестве ионизирующих агентов применяют a-, b- и g-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных из--мерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходи-мость применения биологической защиты при высокой активности источника излучения.

Измерительные преобразователи неэлектрических величин делятся на параметрические и генераторные. В параметрических преобразователях выходной величиной является приращение параметра электрической цепи (R, L, М, С ), поэтому при их использовании необходим дополнительный источник питания.

В генераторных преобразователях выходной величиной являются ЭДС, ток или заряд которых функционально связанные с измеряемой неэлектрической величиной.

При создании измерительных преобразователей неэлектрических величин стремятся получить линейную функцию преобразования. Отличие реальной градуировочной характеристики от номинальной линейной функции преобразования обусловливает погрешность нелинейности, являющуюся одной из главных составляющих результирующей погрешности при измерениях неэлектрических величин. Одним из способов снижения погрешности нелинейности является выбор в качестве входных и выходных величин преобразователя таких величин, взаимосвязь которых ближе к линейной функции. Так, например, при измерении линейных перемещений с помощью емкостного преобразователя может изменяться либо зазор между пластинами, либо площадь их перекрытия. При этом функции преобразования оказываются различными. При изменении зазора зависимость емкости от перемещения подвижной пластины существенно нелинейная, она описывается гиперболической функцией. Однако, если в качестве выходной величины преобразователя использовать не его емкость, а сопротивление на некоторой частоте, то измеряемое перемещение и указанное емкостное сопротивление оказываются связанными линейной зависимостью.

Другим эффективным способом уменьшения погрешности нелинейности параметрических измерительных преобразователей является их дифференциальное построение. Любой дифференциальный измерительный преобразователь фактически представляет собой два аналогичных измерительных преобразователя, выходные величины которых вычитаются, а входная величина воздействует на эти преобразователи противоположным образом.

Структурная схема прибора с дифференциальным измерительным преобразователем приведена на рисунке 16.1.

Измеряемая величина х воздействует на два аналогичных измерительных преобразователя ИП1 и ИП2 , причем соответствующие приращения значений выходных величин у 1 и у 2 имеют противоположные знаки. Кроме того, есть некоторое постоянное начальное значение x 0 величины

на входах этих преобразователей, определяемое обычно конструктивными параметрами преобразователей. Выходные величины у 1 и у 2 вычитаются, а их разность у 3 измеряется электроизмерительным устройством ЭИУ (аналоговым или цифровым).

Предположим, что преобразователи ИП1 и ИП2 идентичны, а их функции преобразования достаточно точно описываются алгебраическим полиномом второго порядка. В этом случае значения у 1 и у 2 на выходах преобразователей можно записать виде (16.1) /14/

После вычитания получим (16.2) /14/

Рисунок 16.1 - Структурная схема диф- Рисунок 16.2 - Реостатные из- ференциального измерительного пре- мерительные преобразователи

образователя

Отсюда видно, что результирующая функция преобразования y 3 = f(х) оказалась линейной. Так как у 3 не зависит от а 0 , то происходит компенсация систематических аддитивных погрешностей измерительных преобразователей. Кроме того, по сравнению с одним преобразователем практически вдвое возрастает чувствительность. Все это определяет широкое применение дифференциальных измерительных преобразователей в практике.

Рассмотрим кратко основные типы используемых параметрических преобразователей неэлектрических величин.

IV. Классификация преобразователей.

(вернуться к оглавлению)

Измерительная информация, получаемая от контролируемого объекта, передается в измерительную систему в виде сигналов какого-либо вида энергии и преобразуется из одного вида энергии в другой. Необходимость такого преобразования вызвана тем, что первичные сигналы не всегда удобны для передачи, переработке, дальнейшего преобразования и воспроизведения. Поэтому при измерении неэлектрических величин воспринимаемые чувствительным элементом сигналы преобразуются в электрические сигналы, являющиеся универсальными.

Та часть прибора, в которой неэлектрический измеряемый сигнал преобразуется в электрический, называется преобразователем.

Известно много электрических методов измерения неэлектрических величин. Для удобства изучения введем классификацию этих методов по виду связи между электрическими и неэлектрическими величинами:

Параметрические преобразователи , в которых измеряемая неэлектрическая величина преобразуется в соответствующее изменение параметров электрической цепи, питаемых внешними источниками ЭДС. При этом сигналы, получаемые от измеряемого объекта, служат только для управления энергией постороннего источника, включенного в цепь.

Генераторные преобразователи , в которых сигналы, получаемые от измеряемого объекта, непосредственно преобразуются в электрические сигналы. При этом желательный эффект преобразования может быть получен без использования посторонних источников ЭДС.

К параметрическим относят методы, основанные на изменении сопротивления, емкости и индуктивности электрических цепей.

К генераторным относятся электромагнитный, термоэлектрический, пьезоэлектрический и другие методы.

Входом является некая величена X, а на выходе электрический сигнал(Y).

(*)

x => ΔF => Δх => ΔR

Преобразование физической величины х в электрический сигнал. Для визуализации параметров R, L, C, M к ним надо подвести генератор электрической мощности

(*) К таким цепям применимы законы расчета электроцепей.

1.1 Метод сопротивления .

В этом методе используется зависимость электрического сопротивления резисторов от различных неэлектрических величин.

Например, изменение омического сопротивления проволочного реостата при перемещении скользящего контакта под действием механических сил.

Термометры сопротивления. Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от –200 °С до 0 °С имеет вид:

R t =R 0 ,

а в области температур от 0 °С до 630 °С

R t =R 0 ,

где R t , R 0 - сопротивление проводника при температуре t и 0 °С; А, В, С - коэффициенты; t - температура, °С.

В диапазоне температур от 0 °С до 180 °С зависимость сопротивления проводника от температуры описывается приближенной формулой

R t =R 0 ,

где α - температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла α≈ 6-10 -3 ...4-10 -3 град -1 .

Измерение температуры термометром сопротивления сводится к измерению его сопротивления R t , с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закрепленную на каркасе из температуростойкого материала (чувствительный элемент), помещенную в защитную арматуру (рис. 5.4).

Рис. 5.4. Чувствительный элемент термометра сопротивления

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R 0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы - около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20 ... 50 мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и ее рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы). В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жестко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется ее электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с ее относительным удлинением соотношением

ΔR/R=K Τ Δl/l,

где l, R - начальные длина и сопротивление проволоки; Δl , ΔR - приращение длины и сопротивления; K Τ - коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов K Τ = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20 ... 30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решетку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рис. 5.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400 °С.

Рис. 5.5. Тензометр

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800 °С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R, база l и коэффициент тензочувствительности K Τ . Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решетка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50 %) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи. Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рис. 5.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором d (рис. 5.6а ) применяемых для измерения перемещения в пределах 0,01…10 мм; с переменной площадью воздушного зазора S δ (рис. 5.6б ), применяемых в диапазоне 5 … 20 мм.

Рис. 5.6. Индуктивные преобразователи перемещений

5.2. Операционные усилители

Операционный усилитель (ОУ) - это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления. Для усилителя напряжения передаточная функция (коэффициент усиления) определяется выражением

Для упрощения конструкторских расчетов предполагается, что идеальный ОУ имеет следующие характеристики.

1. Коэффициент усиления при разомкнутой петле обратной связи равен бесконечности.

2. Входное сопротивление R d равно бесконечности.

3. Выходное сопротивление R 0 = 0.

4. Ширина полосы пропускания равна бесконечности.

5. V 0 = 0 при V 1 = V 2 (отсутствует напряжение смещения нуля).

Последняя характеристика очень важна. Так как V 1 -V 2 = V 0 / А, то если V 0 имеет конечное значение, а коэффициент А бесконечно велик (типичное значение 100000) будем иметь

V 1 - V 2 = 0 и V 1 = V 2.

Поскольку входное сопротивление для дифференциального сигнала(V 1 - V 2)

также очень велико, то можно пренебречь током через R d .Эти два допущения существенно упрощают разработку схем на ОУ.

Правило1. При работе ОУ в линейной области на двух его входах действуют одинаковые напряжения.

Правило2. Входные токи для обоих входов ОУ равны нулю.

Рассмотрим базовые схемные блоки на ОУ. В большинстве этих схем ОУ используется в конфигурации с замкнутой петлей обратной связи.

5.2.1. Усилитель с единичным коэффициентом усиления

(повторитель напряжения)

Если в неинвертирующеи усилителе положить R i равным бесконечности, а R f равным нулю, то мы придем к схеме, изображенной на рис. 5.7.



Согласно правилу 1, на инвертирующем входе ОУ тоже действует входное напряжение V i , которое непосредственно передается на выход схемы. Следовательно, V 0 = V i , и выходное напряжение отслеживает (повторяет) входное напряжение. У многих аналого-цифровых преобразователей входное сопротивление зависит от значения аналогичного входного сигнала. С помощью повторителя напряжения обеспечивается постоянство входного сопротивления.

5.2.2. Сумматоры

Инвертирующий усилитель может суммировать несколько входных напряжений. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор. Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Базовая принципиальная схема суммирующего усилителя представлена на рис. 5.8.



Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе должно быть равно нулю, следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

i f = i 1 + i 2 + . . . + i n

Так как на инвертирующем входе действует нулевое напряжение, то после соответствующих подстановок, получаем

V 0 = -R f ( +. . . + ).

Резистор R f определяет общее усиление схемы. Сопротивления R 1, R 2, . . . R n задают значения весовых коэффициентов и входных сопротивлений соответ-ствующих каналов.

5.2.3. Интеграторы

Интегратор – это электронная схема, которая вырабатывает выходнойсигнал, пропорциональный интегралу (по времени) от входного сигнала.



На рис. 5.9 показана принципиальная схема простого аналогового интегратора.Один вывод интегратора присоединен к суммирующему узлу, а другой – к выходу интегратора. Следовательно, напряжение на конденсоторе одновре-менно является выходным напряжением. Выходной сигнал интегратора не удается описать простой алгебраической зависимостью, поскольку при фикси-рованном входном напряжении выходное напряжение изменяется со скорос-тью, определяемом параметрами V i ,R и C. Таким образом, для того, чтобы найти выходное напряжение, нужно знать длительность действия входного сигнала. Напряжение на первоначально разряженном конденсаторе

где i f – через конденсатор и t i - время интегрирования. Для положительного

Vi имеем i i = V i /R. Поскольку i f = i i , то с учетом инверсии сигнала получаем

Из этого соотношения следует, что V 0 определяется интегралом (с обратным знаком) от входного напряжения в интервале от 0 до t 1 , умноженным на масштабный коэффициент 1/RC. Напряжение V ic - это напряжение на конденсаторе в начальный момент времени (t = 0).

5.2.4. Дифференциаторы

Дифференциатор вырабатывает выходной сигнал, пропорциональный скорости изменения во времени входного сигнала. На рис. 5.10 показана принципиальная схема простого дифференциатора.



Ток через конденсатор .

Если производная положительна, ток i i течет в таком направлении, что формируется отрицательное выходное напряжение V 0.

Таким образом,

Этот метод дифференцирования сигнала кажется простым, но при его практической реализации возникают проблемы с обеспечением устойчивости схемы на высоких частотах. Не всякий ОУ пригоден для использования в дифференциаторе. Критерием выбора является быстродействие ОУ: нужно выбирать ОУ с высокой максимальной скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на ширину полосы. Хорошо работают в дифференциаторах быстродействующие ОУ на полевых транзисторах.

5.2.5. Компараторы

Компаратор – это электронная схема, которая сравнивает два входных напряжения и вырабатывает выходной сигнал, зависящий от состояния входов. Базовая принципиальная схема компаратора показана на рис. 5.11.


Как видим, здесь ОУ работает с разомкнутой петлей обратной связи. На один из его входов подается опорное напряжение, на другой – неизвестное (сравниваемое) напряжение. Выходной сигнал компаратора указывает: выше или ниже уровня опорного напряжения находится уровень неизвестного входного сигнала. В схеме на рис.5.11 опорное напряжение V r подается на неинвертирующий вход, а на инвертирующий вход поступает неизвестный сигнал V i .

При V i > V r на выходе компаратора устанавливается напряжение V 0 = - V r (отрицательное напряжение насыщения). В противоположном случае получаем V 0 = +V r .Можно поменять местами входы – это приведет к инверсии выходного сигнала.

5.3. Коммутация измерительных сигналов

В информационно-измерительной технике при реализации аналоговых измерительных преобразований часто приходится осуществлять электрические соединения между двумя и более точками измерительной схемы с целью вызвать необходимый переходный процесс, рассеять запасенную реактивным элементом энергию (например, разрядить конденсатор), подключить источник питания измерительной цепи, включить ячейку аналоговой памяти, взять выборку непрерывного процесса при дискретизации и т. д. Кроме того, многие измерительные средства осуществляют измерительные преобразования последовательно над большим числом электрических величин, распределенных в пространстве. Для реализации сказанного используются измерительные коммутаторы и измерительные ключи.

Измерительным коммутатором называется устройство, которое преобразует пространственно разнесенные аналоговые сигналы в сигналы, разделенные во времени, и наоборот.

Измерительные коммутаторы аналоговых сигналов характеризуются следующими параметрами:

динамическим диапазоном коммутируемых величин;

погрешностью коэффициента передачи;

быстродействием (частотой переключении или временем, необходимым для выполнения одной коммутационной операции);

числом коммутируемых сигналов;

предельным числом переключений (для коммутаторов с контактными измерительными ключами).

В зависимости от типа используемых в коммутаторе измерительных ключей различаются контактные и бесконтактные коммутаторы .

Измерительный ключ представляет собой двухполюсник с явно выраженной нелинейностью вольт-амперной характеристики. Переход ключа из одного состояния (закрытого) в другое (открытое) выполняется с помощью управляющего элемента.

5.4. Аналого-цифровое преобразование

Аналого-цифровое преобразование составляет неотъемлемую часть измерительной процедуры. В показывающих приборах эта операция соответствует считыванию числового результата экспериментатором. В цифровых и процессорных измерительных средствах аналого-цифровое преобразование выполняется автоматически, а результат либо поступает непосредственно на индикацию, либо вводится в процессор для выполнения последующих измерительных преобразований в числовой форме.

Методы аналого-цифрового преобразования в измерениях разработаны глубоко и основательно и сводятся к представлению мгновенных значений входного воздействия в фиксированные моменты времени соответствующей кодовой комбинацией (числом). Физическую основу аналого-цифрового преобразования составляет стробирование и сравнение с фиксированными опорными уровнями. Наибольшее распространение получили АЦП поразрядного кодирования, последовательного счета, следящего уравновешивания и некоторые другие. К вопросам методологии аналого-цифрового преобразования, которые связаны с тенденциями развития АЦП и цифровых измерений на ближайшие годы относятся, в частности:

Устранение неоднозначности считывания в наиболее быстродействующих АЦП сопоставления, получающих все большее распространение с развитием интегральной технологии;

Достижение устойчивости к сбоям и улучшение метрологических характеристик АЦП на основе избыточной системы счисления Фибоначчи;

Применение для аналого-цифрового преобразования метода статистических испытаний.

5.4.1 Цифроаналоговые и аналого-цифровые преобразователи

Цифроаналоговые (ЦАП) и аналого-цифровые преобразователи (АЦП) являются неотъемлемой частью автоматических систем контроля управления и регулирования. Кроме того, поскольку по­давляющее большинство измеряемых физических величин являются аналоговыми, а их обработка индикация и регистрация, как правило, осуществляются цифровыми методами, ЦАП и АЦП нашли широкое применение в автоматических средствах измерений. Так, ЦАП и АЦП входят в состав цифровых измерительных приборов (вольтметров, осциллографов, анализаторов спектра, корреляторов и т. п.), программируемых источников питания, дисплеев на электроннолучевых трубках, графопостроителей, радиолокационных систем установок для контроля элементов и микросхем, являются важными компонентами различных преобразователей и генераторов, устройств ввода вывода информации ЭВМ. Широкие перспективы применения ЦАП и АЦП открываются в телеметрии и телевидении. Серийный выпуск малогабаритных и относительно дешевых ЦАП и АЦП даст возможность еще более широкого использования методов дискретно непрерывного преобразования в науке и технике.

Существует три разновидности конструктивно технологического исполнения ЦАП и АЦП: модульное, гибридное и интегральное. При этом доля производства интегральных схем (ИС) ЦАП и АЦП в общем объеме их выпуска непрерывно возрастает, чему в значительной степени способствует широкое распространение микропроцессоров и методов цифровой обработки данных. ЦАП - устройство, которое создает на выходе аналоговый сигнал (напряжение или ток), пропорциональный входному цифровому сигналу. При этом значение выходного сигнала зависит от значения опорного напряжения U оп, определяющего полную шкалу выходного сигнала. Если в качестве опорного напряжения использовать какой либо аналоговый сигнал, то выходной сигнал ЦАП будет пропорционален произведению входных цифрового и анало­гового сигналов.В АЦП цифровой код на выходе определяется отношением пpeобразуемого входного аналогового сигналa к опорному сигналy, соответствующему полной шкале. Это соотношение выполняется и в том случае, если опорный сигнал изменяется по какому-либо за­кону. АЦП можно рассматривать как измеритель отношений или делитель напряжений с цифровым выходом.

5.4.2. Принципы действия, основные элементы и структурные схемы АЦП

В настоящее время разработано большое количество типов АЦП, удовлетворяющее разнообразным требованиям. В одних случаях преобладающим требованием является высокая точность, в других - скорость преобразования.

По принципу действия все существующие типы АЦП можно разделить на две группы: АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений и АЦП интегрирующего типа.

В АЦП со сравнением входного преобразуемого сигнала с дискретными уровнями напряжений используется процесс преобразования, сущность которого заключается в формировании напряжения с уровнями, эквивалентными соответствующим цифровым кодам, и сравнении этих уровней напряжения с входным напряжением с целью определения цифрового эквивалента входного сигнала. При этом уровни напряжения могут формироваться одновременно, последовательно или комбинированным способом.

АЦП последовательного счета со ступенчатым пилообразным напряжением является одним из простейших преобразователей (рис. 5.12).



По сигналу "Пуск" счетчик устанавливается в нулевое состояние, после чего по мере поступления на его вход тактовых импульсов с частотой f т линейно-ступенчато возрастает выходное напряжение ЦАП.

При достижении напряжением U вых значения U вх схема сравнения прекращает подсчет импульсов в счетчике Сч, а код с выходов последнего заносится в регистр памяти. Разрядность и разрешающая способность таких АЦП определяется разрядностью и разрешающей способностью используемого в его составе ЦАП. Время преобразования зависит от уровня входного преобразуемого на-пряжения. Для входного напряжения, соответствующего значению полной шка-лы, Сч должен быть заполнен и при этом он должен сформировать на входе ЦАП код полной шкалы. Это требует для n- разрядного ЦАП времени преобразования в (2 n - 1) раз больше периода тактовых импульсов. Для быстрого аналого-цифрового преобразования использование подобных АЦП нецелесообразно.

В следящем АЦП (рис. 5.13) суммирующий Сч заменен на реверсивный счетчик РСч, чтобы отслеживать изменяющееся входное напряжение. Выходной сигнал КН определяет направление счета в зависимости от того превышает или нет входное напряжение АЦП выходное напряжение ЦАП.


Перед началом измерений РСч устанавливается в состояние, соответствующее середине шкалы (01 ... 1). Первый цикл преобразования следящего АЦП аналогичен циклу преобразования в АЦП последовательного счета. В дальнейшем циклы преобразования существенно сокращаются, так как данный АЦП успевает отследить малые отклонения входного сигнала за несколько тактовых периодов, увеличивая или уменьшая число импульсов, записанное в РСч, в зависимости от знака рассогласования текущего значения преобразуемого напряжения U вх и выходного напряжения ЦАП.

АЦП последовательного приближения (поразрядного уравновешивания) нашли наиболее широкое распространение в силу достаточно простой их реализации при одновременном обеспечении высокой разрешающей способ-ности, точности и быстродействия, имеют несколько меньшее быстродействие, но существенно большую разрешающую способность в сравнении с АЦП, реализующими метод параллельного преобразования.



Для повышения быстродействия в качестве управляющего устройства используется распределитель импульсов РИ и регистр последовательного приближения. Сравнение входного напряжения с опорным (напряжением обратной связи ЦАП) ведется, начиная с величины, соответствующей старшему разряду формируемого двоичного кода.

При пуске АЦП с помощью РИ устанавливается в исходное состояние РПП:

1000 . . .0. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда. Если входной сигнал меньше, чем сигнал от ЦАП, в следующем такте с помощью РПП на цифровых входах ЦАП формируется код 0100. . . 0, что соответствует включению 2-го по старшинству разряда. В результате выходной сигнал ЦАП уменьшается вдвое.

Если входной сигнал превышает сигнал от ЦАП, в очередном такте обеспечивается формирование кода 0110 ... 0 на цифровых входах ЦАП и включение дополнительного 3-го разряда. При этом выходное напряжение ЦАП, возросшее в полтора раза, вновь сравнивается с входным напряжением и т. д. Описанная процедура повторяется n раз (где n - число разрядов АЦП).

В результате на выходе ЦАП сформируется напряжение, отличающееся от входного не более, чем на единицу младшего разряда ЦАП. Результат преобразования снимается с выхода РПП.

Достоинством данной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (с временем преобразования порядка несколько сот наносекунд).

В АЦП непосредственного считывания(параллельного типа) (рис. 5.15) входной сигнал одновременно прикладывается ко входам всех КН, число m которых определяется разрядностью АЦП и равно m = 2 n - 1, где n - число разрядов АЦП. В каждом КН сигнал сравнивается с опорным напряжением, соответствующем весу определенного разряда и снимаемым с узлов резисторного делителя, питаемого от ИОН.



Выходные сигналы КН обрабатываются логическим дешифратором, вырабатывающим параллельный код, являющийся цифровым эквивалентом входного напряжения. Подобные АЦП обладают самым высоким быстродействием. Недостаток таких АЦП заключается в том, что с ростом разрядности количество требуемых элементов практически удваивается, что затрудняет построение многоразрядных АЦП подобного типа. Точность преобразования ограничивается точностью и стабильностью КН и резисторного делителя. Чтобы увеличить разрядность при высоком быстродействии реализуют двухкаскадные АЦП, при этом с выходов второй ступени ДШ снимаются младшие разряды выходного кода, а с выходов ДШ первой ступени - старшие разряды.

АЦП с модуляцией длительности импульса (однотактный интегрирующий)

АЦП характеризуется тем, что уровень входного аналогового сигнала U вх преобразуется в импульс, длительность которого t имп является функцией значения входного сигнала и преобразуется в цифровую форму с помощью подсчета числа периодов опорной частоты, которые укладываются между началом и концом импульса. Выходное напряжение интегратора под действием подклю-


ченного к его входу U оп изменяется от нулевого уровня со скоростью

В момент, когда выходное напряжение интегратора становится равным входному U вх, КН срабатывает, в результате чего заканчивается формирование длительности импульса, в течение которого в счетчиках АЦП происходит подсчет числа периодов опорной частоты. Длительность импульса определяется временем, за которое напряжение U вых изменяется от нулевого уровня до U вх:

Достоинство данного преобразователя заключается в его простоте, а недостатки - в относительно низком быстродействии и низкой точности.